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LETTER TO THE EDITOR 

Quantised Hall effect and magnetoresistance through a 
quantum point contact 

B R Snellf, P H Betont, P C Main?, A Nevest, J R Owers-Bradley?, L 
Eaves?, M Heninit and 0 H Hughes?, S P Beaumont$ and C D W 
Wilkinson$ 
t Department of Physics, University of Nottingham, Nottingham NG7 2RD, UK 
$ Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow 
GL2 8QQ, Scotland, UK 

Received 10 July 1989 

Abstract. The four-terminal magnetoresistance and quantised Hall effect through a quantum 
point contact are investigated in a two-dimensional electron gas ( Z D E G )  based on an n-type 
(AlGa)As/GaAs single heterostructure. Depending on the choice of current and voltage 
contacts we measure three different magnetoresistances in a quantising magnetic field. The 
results agree with a simple model based on conduction via edge states and also with a more 
conventional analysis based on the properties of a bulk ZDEG. 

The two-terminal conductance of a quantumpoint contact (QPC) is known to be quantised 
both in zero and finite magnetic fields [l, 21, and is equal to 2ezi/h, assuming spin- 
degeneracy, where i is an integer. In zero magnetic field, the four-terminal conductance 
is equal to the two-terminal conductance except that the former is more reliably 
measured in practice since it eliminates problems with series lead resistances. However, 
in a magnetic field the situation is different. Recently, van Houten and co-workers [3] 
have demonstrated a negative magnetoresistance at small magnetic fields in the four- 
terminal resistance of a QPC. They compare their results to a simple expression derived 
for the four-terminal resistance 

R4t = (h/2e2)(1/Nc - W d  N C  < N B  (1) 

where Nc is the number of conducting channels in the QPC and NB is the number of 
occupied Landau levels in the bulk 2-dimensional electron gas ( ~ D E G ) .  Since their 
measurements were confined to low magnetic fields, equation (1)  manifested itself as a 
negative ‘magnetoresistance’ from the zero field value of Rqt = h/2e2Nc. In this Letter 
we present measurements at higher magnetic fields which confirm the validity of equation 
(1) in the fully quantised region where both NB and Nc have discrete integer values. Also 
we find that equation (1) is only applicable when the geometrical arrangement of current 
and voltage leads corresponds to a measurement of pxx in the bulk 2DEG. Measurements 
using lead configurations corresponding to pxy yield two different values of resistance, 
depending on the direction of the magnetic field, both of which are different from Rqt 
defined in equation (1). 
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Figure 1. (a )  Topological diagram of the sample geometry. Each contact is represented as a 
reservoir. The arrows on the lines representing the edge states denote the current direction 
for the magnetic field, B ,  out of the paper. ( b )  The equivalent diagram for measuring 
R(cdab). Current flows between contacts c (positive) and b (earthed). The electrons flow 
along the voltage equipotentials in 'bulk' current-carrying states. The direction of current 
flow for magnetic field, B .  out of the paper is indicated by arrows. Near the current contacts 
b and c ,  the current flow breaks away from the equipotentials, giving rise to dissipation. 
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Figure 2. Four-terminal resistance measurements as a function of gate voltage, V,, at B = 
1.88 T and T =  100 mK. Curve A, R(cdba), curve B, R(cdab); curve C,  R(dcab). Inset: 
R(cdab) as a function of magnetic field with both gates grounded. 

The sample is shown schematically in figure 1. The base ~ D E G  material is a single 
heterostructure of modulation doped (AlGa)As/GaAs with sheet density y1 = 3 x 10" 
cm-2 after illumination and a mobility of -lo6 cm2 V-ls-' , corresponding to an elastic 
mean free path of -10 pm, as measured at 100 mK. The QPC is defined by a pair of Ti/ 
Au gates made by electron-beam lithography and lift-off techniques. The lithographic 
width of each gate is 0.15 pm and they are 0.24 pm apart at their nearest points. The 
four ohmic contacts a ,  b, c, d shown in figure 1 are made using Au/Ge/Ni. 

In zero magnetic field, the four-terminal conductance through the QPC shows the 
usual step-like variation, quantised in units of 2e/h2, as the voltage is varied on both gates. 
With both gates grounded we observe well-defined Shubnikov-de Haas oscillations, as 
shown in the inset of figure 2 for magnetic fields between 1 and 4 T applied perpendicular 
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to the plane of the ~ D E G .  The experiments are performed at fixed values of magnetic 
field corresponding to the zeros in p x x .  For example, the minimum centred on 1.51 T 
corresponds to five spin-degenerate levels being filled. At  magnetic fields above -2 T 
we are able to resolve spin-splitting in the Shubnikov-de Haas oscillations, but we do 
not observe spin-splitting of resistance plateaux when we sweep the gate voltage. 

The two-terminal magnetoresistance at all magnetic fields is given by Rzt = h/2e2Nc 
for N c  > NB. The four-terminal resistance is shown in figure 2 for three different lead 
configurations at a magnetic field ( B )  of 1.88 T and a temperature of 100 mK as a function 
of the gate voltage. It is convenient to use the following notation to describe the current 
and voltage contact arrangement. Curve A is R(dcab) which is R(I+V+V-I-) signifying 
that d and b are the two current contacts and c and a are the two voltage contacts. Note 
that the order of c and a is relevant. Curve B is R(cdab) and curve C is R(cdba). 

Curve B corresponds to the geometry which measures pxx in the bulk ~ D E G .  As can 
beseeninfigure2, thisisthecaseforgatevoltages,V, > -0.4V,whereRxx = Oat 1.88T 
as shown in the inset of figure 2. As the negative bias on the gates is increased and the 
QPC is defined, curve B follows precisely the behaviour predicted by equation 1 when 
Ne < NB. In this case, at 1.88 T, the number of occupied spin-degenerate bulk Landau 
levels, NB = 4. For example, the plateau centred at Vg - - 1.75 V has a resistance given 
by equation (1) corresponding to NB = 4 and Ne = 1. Note that the measured resistance 
is not the inverse of a quantised conductance value. It is the difference between two 
resistances, each of which is the inverse of a quantised conductance value. Curve B is 
also obtained when the magnetic field is reversed in direction or for the configuration 
R(dcba) which also corresponds to R, at V g  = 0. 

Curve A follows the equation 

Curve C, on the other hand, is described by 

For example, on curve C the plateau centred at Vg = - 1.75 V has a resistance given 
by equation (3) with Ne = 1 and NB = 4. If the magnetic field is reversed then the 
configuration of curve A gives a resistance described by equation (3) and similarly for 
curve C which is then described by equation (2). Similar behaviour is observed at all 
magnetic fields corresponding to pxx minima with different values of NB but with Nc still 
controlled by Vg.  

Following van Houten and co-workers [3] it is possible to interpret the results by 
assuming that in the vicinity of the QPC the current is carried by edge states [4]. Equation 
(1) was originally derived using this formalism [3,5]. Each current or voltage contact is 
assumed to form a reservoir with chemical potential pi (i = a, b, c or d) as shown 
schematically in figure l ( a ) .  Note that figure l ( a )  is only a topological representation of 
the sample geometry. Using the ideas of Buttiker [5] and Landauer [6] each reservoir is 
assumed to inject a current of 2epi/h into each available conduction channel. In a 
magnetic field these channels may be edge states. The direction of motion of the carriers 
along these edge states will be determined by the direction of the applied magnetic field. 
In figure l(a) the arrows show the current direction for B out of the paper. 



7502 Letter to the Editor 

Referring to figure l ( a ) ,  we assume there are NB filled Landau levels in the bulk ZDEG 
and Nc channels through the QPC, where, for the moment, we take NB > Nc. We look 
first at the configuration R(cdab), that is using c and b as the current leads and d and a 
as the voltage probes. We choose pb = Ofor convenience. Thus to calculate the measured 
resistance we require 

The current injected by lead c is pc(2e/h)NB, but of this only pc(2e/h)Nc is transmitted 
to the other current lead. Thus we have 

Since = 0 there is no current transmitted to lead a, so that, since a is a voltage contact 
with zero net current, ,pa = 0. It follows, therefore, that no current passes between a and 
d, so that the only current which enters d is the fraction of the current from c which does 
not go to b, i.e. (2e/h)pc(NB - Nc) .  But d is a voltage contact with a net current of zero 

R(cdab) = (pd  - pa)/eZ. (4) 

Z = (2e /h)pcNc.  ( 5 )  

so 
( 2 e / h ) 4 p d N B  = (2e/h)pc(NB - N C ) .  

R(cdab) = (h /2e2) (1 /Nc  - l/NB) 

(6) 

( 7 )  

Combining (4), ( 5 )  and (6) we obtain 

which is the result obtained by vanHouten and co-workers [3]-see equation (1). 
Reversing the magnetic field changes the direction of the arrows on the edge states in 
figure l(a). However, a similar analysis shows that Equation (7)  is still valid, consistent 
with the experimental results. Likewise R(dcba) also gives the same expression. If 
NB < Nc then the QPC plays no part and we have a simple R, measurement and R = 0 
for all the above cases. 

We next consider R(cdba) with the magnetic field as in figure l ( a ) .  Now we take pa = 
0. The current from c to b is, as above, (2e/h)pcNc. However, in this configuration, B is 
a voltage contact so the net current must be zero. Hence 

and the current into a is also (2e/h)pcNc. No current enters d from a, since pa = 0, so 
the only current entering d is the current injected by c which is not transmitted by the 
QPC. Hence 

Combining (8) and (9) we get 

as is observed in curve c of figure 2 (c.f. equation ( 3 ) ) .  

Likewise pc = p d  and 

in agreement with curve A of figure 2 (c.f. equation ( 3 ) ) .  It is a simple matter to show 
that reversal of the magnetic field makes R(dcab) obey equation (10) and R(cdba) obey 
equation (11). If Nc > NB then again the QPC does not affect the measurement and 

for the direction of B implied by figure l (b ) .  Similar expressions to equations (7), (10) 
and (12) have been derived to describe the related experiments of Haug and co-workers 
[7] and Washburn and co-workers [8]. However, in their case the current carrying 
channels were transmitted across a 2D potential barrier rather than through a QPC. 

pbNB = p c N C  (8) 

p.lc(NB - NC) = pdNB. 

R(cdba) = ( p ,  - pb)/eZ = (h /2e2) (1 /Nc  - 2/NB) ,  

(9) 

(10) 

We can also calculate R(dcab). Defining = 0, it follows directly that pa = 0. 

R(dcab) = ( ~ c  - p a  ) / e Z = ~ d / [ ( 2 e * / h ) ~  d N C I  = (h/2e2 )(1/Nc) (11) 

-R(cdba) = R(dcab) = (h /2e2) (1 /NB)  (12) 
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It is interesting to note that the four-terminal resistances given by equations ( 7 ) ,  (10) 
and (11) can be derived without necessarily invoking edge states by combining the two- 
terminal result, Rzt = h/2e2Nc (Nc < NB), with a description [9-131 of the current flow 
and potential distribution in the bulk regions of the 2DEG under the dissipationless 
conditions of the quantum Hall effect. It is not necessary to consider the microscopic 
details and the current flow and potential distribution in the QPC itself. Figure l ( b )  shows 
schematical ‘bulk’ current carrying equipotentials into and out of the QPC. The current 
flow crosses the equipotentials in the vicinity of the contacts b and c. The value of the 
two-terminal resistance between b and c gives p c  - p b  = Zh/2e2Nc < NB). In addition, 
pc = p d  and pa - p b  = Ih/2e2NB. The latter result follows since a line from a and b must 
cross all of the current carrying equipotentials. Hence 
R(cdab) = (Pd - P a > M  = (Pc - P d e l -  (Pa - Pb)/el  

= (h /2e2) (1 /Nc  - I / N B )  
as given by equation (7). Therefore, our four-terminal results can be deduced from the 
two-terminal result and a description of the quantised Hall effect without invoking edge 
states. 

To summarise, we have measured the four-terminal resistance of a quantum point 
contact for various arrangements of the current and voltage contacts. We find that the 
results can be understood either in terms of a model involving edge states or a more 
conventional description of the current flow in the bulk ZDEG region. 

This work is supported by SERC. 

References 

[1] van Wees B J,  van Houten H, Beenakker C W J,  Williamson J G, Kouwenhoven L P, van der Mare1 D 

[2] Wharam D A, Thornton T J ,  Newbury R, Pepper M, Ahmed H,  Frost J E F, Hasko D G, Peacock D C, 

[3] van Houten H, Beenakker C W J,  van Loosdrecht P H M, Thornton T J,  Ahmed H, Pepper M, Foxon C 

[4] Halperin B I 1982 Phys. Reu. B 25 2185 
[5] Buttiker M 1988 Phys. Rev. B 38 9375 
[6] Landauer R 1987 Z. Phys. B 68 217 

[7] Haug RJ, MacDonald AH, Streda P and von Klitzing K 1989 Phys. Reu. Lett. 61 2797 
[8] Washburn S ,  Fowler AB, Schmid H and Kern D 1989 Phys. Reu. Lett. 61 2801 
[9] Luryi S and Kazarinov R F 1983 Phys. Rev. B 27 1386 
IO] Luryi S 1987 Springer Series in Solid State Sciences ed. G Landwehr vol71 p 16 
111 Fang F F and Stiles P J 1984 Phys. Rev. B 29 3749 
121 Zheng H 2, Tsui D C and Chang A M 1985 Phys. Rev. B 32 5506 
131 Von Klitzing K and Ebert G 1984 Springer Series in Solid State Sciences ed. G Bauer, F Kuchar and H 

and Foxon C T 1988 Phys. Reu. Lett. 60 848 

Ritchie D A and Jones G A C 19881. Phys. C: Solid State Phys. 21 L209 

T and Harris J J 1988 Phys. Reu. B 37 8534 

Landauer R 1988 Phys. Reu. Lett. 62 229 

Heinrich vol53 p 42 


